Activity $-2 \quad(13 / 6 / 13)$

Basic Proportionality Theorem for a Triangle

Objective

To verify the Basic Proportionality Theorem using parallel line board and triangle cut-outs.

Q
 Materials required

coloured paper, pair of scissors, parallel line board, ruler, sketch pens.

Basic Proportionality Theorem

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Pre-requisite knowledge

Drawing parallel lines on a rectangular sheet of paper.

Procedure

1. Cut three different triangles from a coloured paper. Name them as $\triangle \mathrm{ABC}$, $\triangle P Q R$ and $\triangle D E F$.
2. Take the parallel line board (a board on which parallel lines are drawn) as shown in Fig 4 (a). (Note: Students can make the parallel line board, using the techniques given in class IX laboratory manual.)
3. Place $\triangle \mathrm{ABC}$ on the board such that any one side of the triangle is placed on one of the lines of the board as shown in Fig 4 (b). (It would be preferable to place the triangle on the lowermost or uppermost line.)
4. Mark the points $P_{1}, P_{2}, P_{3}, P_{4}$ on $\triangle A B C$ as shown in Fig 4(b).

Join $\mathrm{P}_{1} \mathrm{P}_{2}$ and $\mathrm{P}_{3} \mathrm{P}_{4}$. $P_{1} \mathrm{P}_{2} \| \mathrm{BC}$ and $\mathrm{P}_{3} \mathrm{P}_{4} \| \mathrm{BC}$
5. Note the following by measuring the lengths of the respective segments using a ruler.

Ratios	Value
$\frac{A P_{1}}{P_{1} B}$	
$\frac{\mathrm{AP}_{2}}{\mathrm{P}_{2} \mathrm{C}}$	
$\frac{\mathrm{AP}_{3}}{\mathrm{P}_{3} \mathrm{~B}}$	
$\frac{\mathrm{AP}}{4}$	
$\mathrm{P}_{4} \mathrm{C}$	

6. Repeat the experiment for $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$.
