Synopsis – Grade 10 Science Term I

Chapter 1: Chemical Reactions and Equations

- ✤ In a chemical reaction, at least one of the following will occur:
 - Change in state
 - Change in colour
 - Evolution of a gas
 - Change in temperature
- Chemical equation: A symbolic representation of the reactants, products and their physical states.
- Balanced chemical equation: Here, the total number of atoms on the reactant side is equal to the total number of atoms on the product side.
- ✤ How to balance an equation
 - Step I: Write reactants and products
 - Step II: Balance the max. number of a particular atom on both sides
 - Step III: Balance other atoms
- **Exothermic reactions:** In these types of reactions, heat is released.
- Endothermic reactions: In these types of reactions, heat is absorbed.
- * Types of reactions
 - **Combination reaction:** Here, two or more reactants combine to form one single product. Example: $CaO_{(s)} + H_2O_{(l)} \longrightarrow Ca(OH)_{2 (aq)}$
 - **Decomposition reaction:** Here, a single reactant breaks into several simple products. Example: $CaCO_3 \xrightarrow{Heat} CaO + CO_2$
 - **Displacement reaction:** Here, one element replaces another element from a compound and forms a new compound. Example: $Fe + CuSO_4 \longrightarrow FeSO_4 + Cu$
 - Double displacement reaction: The elements form two compounds which interchange their position. Example: Na₂SO₄ + BaCl₂ ----> BaSO₄ + 2NaCl
 - Oxidation and reduction reactions
 - **Oxidation:** In this type of reaction, a substance gains oxygen or releases hydrogen. Example: $2Cu + O_2 \xrightarrow{\text{Heat}} 2CuO$ [Oxidation of Cu]
 - **Reduction:** In this type of reaction, a substance gains hydrogen or releases oxygen. Example: $CuO + H_2 \xrightarrow{Heat} Cu + H_2O$ [Reduction of CuO]
 - **Redox reactions:** Reactions where simultaneous oxidation and reduction reactions take place are called redox reactions. Example:

- Corrosion The process of coating up of a metal by a layer of some other substance due to the presence of some external substances (such as acids and moisture) is called corrosion.
- Rancidity The process of oxidation of fats and oils leading to the change of their taste and smell is called rancidity.

Chapter 2: Acids, Bases and Salts

- * Acids: These are the substances having sour taste. They turn the colour of blue litmus to red.
- ◆ Base: These are the substances having bitter taste. They turn the colour of red litmus to blue.
- Indicator: It is a dye that gives different colours in acids and/ or bases. Turmeric is a natural indicator.
- ***** Reaction with metals:

Acid + Metals \rightarrow Salt + Hydrogen gas

 $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$

Base + Metals \rightarrow Salt + Hydrogen gas

 $Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2$

★ Reaction of acids with metal carbonates and metal hydrogen carbonates Metal carbonate/ Metal hydrogen carbonate + Acid → Salt + Water + CO₂

 $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$

- ♦ Metal oxide + Acid Metal oxide + Acid → Salt + Water
- ✤ Non-metal oxide + Base Non-metal oxide + Base → Salt + Water
- ★ Acid-Base reaction Acid + Base → Salt + Water NaOH + HCl → NaCl + H₂O
- ✤ In water solution:

Acid releases H^+ ion $H^+ + H_2O \rightarrow H_3O^+$

 $HCl + H_2O \longrightarrow H_3O^+ + Cl^-$

Base releases OH^- ion Na $OH \xrightarrow{H_2O} Na^+ + OH^-$

- Higher H^+ concentration \rightarrow Strong acid
- Lower H^+ concentration \rightarrow Weak acid
- Higher OH^- concentration \rightarrow Strong base
- ♦ pH \rightarrow The measure of acidity or alkalinity (Measured on a scale of 0 to 14)
 - pH 7 \rightarrow Neutral solution
 - $pH < 7 \rightarrow Acidic solution$
 - $pH > 7 \rightarrow Basic solution$
 - Human body pH = 7.0 7.8
 - Change in pH in body causes \rightarrow Tooth decay, stomach pain, burning pain (Honey bee)
- **♦ Common salt** (NaCl) : Has pH = 7

• Preparation:

neritnation

 $NaCl + H_2O + CO_2 + NH_3 \longrightarrow NH_4Cl + NaHCO_3$

- Use:
 - Making baking powder
 - Ingredient for antacids
 - Soda-acid fire extinguisher
- ***** Washing soda \rightarrow Na₂CO₃.10H₂O
 - Preparation:

 $Na_2CO_3 + 10H_2O \longrightarrow Na_2CO_3.H_2O$

- Use:
 - In glass, soap, paper industries
 - Making sodium compounds such as borax
 - o As domestic cleaning agent
 - Removing permanent hardness of water

• Plaster of Paris
$$\rightarrow$$
 CaSO₄ $\cdot \frac{1}{2}$ H₂O

• Preparation:

$$CaSO_{4} \cdot \frac{1}{2}H_{2}O + 1\frac{1}{2}H_{2}O \longrightarrow CaSO_{4} \cdot 2H_{2}O \quad (solid)$$
(Gypsum)

- Use:
 - For making toys
 - For making decorations
 - For setting fractured bones

Chapter 3: Metals and Non-metals

Metals

• Physical properties

- Shining surface (in pure state) [called metallic lustre]
 - Generally hard [varies from metal to metal]
 - Malleability [ability to make thin sheets by beating]
 - Ductility [ability to make wire by drawing] [Gold is the most ductile element]
 - Good conductor of heat
 - High melting point
 - Conduct electricity
 - Sonorous [Produce sound]
- Chemical properties
 - \circ Combine with oxygen to form oxides: Example: $2Cu + O_2 \rightarrow 2CuO$

Soluble metal oxides are called alkali. Na and K react very easily with O₂. So, they are kept immersed in kerosene.

• **Reaction with water:**

Metal + Water \longrightarrow Metal oxide + H₂

If oxide is soluble, then metal hydroxide is formed.

 $2K + H_2O \rightarrow 2KOH + H_2 + Heat$

• Reaction with Acids

Metal + Dilute acid \rightarrow Salt + H₂

Reactivity: Mg > Al > Zn > Fe > Cu

Aqua regia: Freshly-prepared concentrated HCl^+ and concentrated HNO_3 in 3:1 ratio It can dissolve gold and platinum.

 Reaction with solutions of other metal salts: Displacement reactions Reactivity series: K > Na > Ca > Mg > Al > Zn > Fe > Cu > An > Ag

Non-metals

• Physical properties

- Do not have lustre
- Generally, exist in liquid and gaseous states
- Are neither malleable nor ductile
- Bad conductors of heat and electricity
- Are non-sonorous
- Metals + Non-metals

$$Na \longrightarrow Na^{+} + e^{-} \qquad Cl + e^{-} \longrightarrow Cl^{-}$$

2, 8, 1 2, 8 2, 8, 7 2, 8, 8

$$Na^{+} \times Cl^{\times} \longrightarrow (Na^{+})[Cl^{-}]$$

- Physical properties of Ionic compounds
 - They are usually found in solid state
 - Hard [because of strong attraction force]
 - Are usually brittle in nature
 - High melting and boiling points
 - Soluble in H₂O; insoluble in kerosene, petrol
 - Conduct electricity in H₂O solution

Extraction of metals

K Na Ca Mg Ac	Zn Fe Cu	Ag An
Highly reactive metals	Medium reactive metals	Found in native form
-	-	

Electrolysis

Carbon reduction

✤ Less active metals

2HgS + $3O_2 \longrightarrow 2$ HgO + SO_2 Heated in air

- * Moderately active metals
 - Roasting Heating of sulphide ore in excess air $2ZnS+3O_2 \longrightarrow 2ZnO+2SO_2$
 - Calcination Heating of carbonate ores in limited air $ZnCO_3 \longrightarrow ZnO + CO_2$

Chapter 4: Life Processes

- Life processes: Continuously perform the functions of maintenance in living organisms.
 Examples: digestion, respiration, circulation etc.
- Nutrition: Process of obtaining nutrients from the environment. Two types- autotrophic and heterotrophic
 - Autotrophic nutrition
 - Synthesis of food by photosynthesis
 - **Photosynthesis equation:** $6CO_2 + 6H_2O \xrightarrow{\text{Sunlight}} C_6H_{12}O_6 + 6O_2$
 - Two phases of photosynthesis- light and dark reactions
 - Light reaction: light energy absorbed, H₂O split into H₂ and O₂, ATP and NADPH₂ synthesized
 - Dark reaction: CO₂ reduced to carbohydrates
 - Heterotrophic nutrition
 - o Generally derive energy from plants and animal sources
 - Mainly of three types: holozoic, parasitic, and saprophytic
 - **Digestion:** mechanical and chemical reduction of ingested nutrients
 - Human digestive system: consists of the long alimentary canal
 - Parts of alimentary canal

• Accessory organs: pancreas, liver

* Respiration

- Enzymatically-controlled energy released from the breakdown of organic substances
- Two types- aerobic and anaerobic
- Aerobic respiration
 - Oxidation of food materials with the help of oxygen
 - Yields 36 ATP
 - First step- glycolysis (occurs in the cytoplasm), 2 pyruvate molecules produced
 - Second step- acetyl CoA produced
 - Third step- Kreb's cycle inside the mitochondrial matrix, energy produced
 - **Last step-** energy converted to ATP by ATP synthase enzyme
- Anaerobic respiration
 - Oxidation of nutrients without utilizing molecular oxygen
 - Yields 2 ATP
 - First step- glycolysis (occurs in the cytoplasm), 2 pyruvate produced
 - o Second step- break down of pyruvic acid into waste products
- Human respiration

- Bronchioles divide to form many alveoli
- Alveoli are sites of gas exchange
- \circ O₂ present in alveolar blood vessels transported to body cells

* Transportation

- A liquid medium is required
- Transportation in humans
 - Blood, lymph- involved in transportation
 - o Components of blood- RBCs, WBCs, platelets, and plasma
 - o Two types of blood vessels- arteries and veins
 - Arteries carry oxygenated blood, except pulmonary artery
 - Veins carry deoxygenated blood, except pulmonary vein

• Human heart divided into four chambers – right auricle, right ventricle, left auricle, and left ventricle

- Right side of the heart receives deoxygenated blood
- Left side of the heart receives oxygenated blood

• Transportation in plants

- Transport of water-xylem
- Transport of food- phloem
- **Excretion:** Involves removal of harmful metabolic wastes from the body.
 - Excretion in humans

- Nitrogenous wastes such as urea and uric acid are removed
- Nephron- basic filtration unit
- Main components of the nephron are: glomerulus, Bowman's capsule, renal tube

Chapter 5: Control and Coordination

- Control and coordination: Working together of various integrated body systems in response to changes in the body for maintenance of bodily functions.
 - Nervous and muscular tissues provide control and coordination
 - **Neurons** -functional units of the nervous system, conduct messages in the form of impulses
 - **Synapse** a small gap between the axon of one neuron and the dendrite of the next neuron
 - Three types of responses of the nervous system
 - Reflex action
 - Automated action in response to a stimulus
 - Possible due to quick detection by sensory receptors and the resultant movement of muscles
 - Reflex arc situated in the spinal cord
 - Voluntary action: Actions such as writing, talking etc. that are under the control of the body.
 - **Involuntary action:** Actions such as breathing, digestion etc. that are not under conscious control

✤ Parts of the nervous system

- Human nervous system divided into- central nervous system (CNS) and peripheral nervous system (PNS)
- CNS consists of the brain and spinal cord
- PNS consists of the nerves that connects the CNS to different parts of the body
- The Brain, spinal cord, and nerves are the important parts of the nervous system
- Brain

- o Human brain is classified into- forebrain, midbrain, and hindbrain
- o Forebrain- cerebrum, thalamus, and hypothalamus
- Midbrain
- o Hindbrain- pons, medulla, and cerebellum

Tropic movement

- Directional movement of a specific part of the plant in response to an external stimulus
- Phototropism- response to light
- Geotropism- response to gravity
- Hydrotropism- response to water
- Chemotropism- response to chemicals
- Thigmotropism- response to touch

* Chemical coordination in plants

- Growth and development in plants is possible because of growth hormones or phytohormones
- Auxin, Gibberellin, cytokinin, abscisic acid and ethylene are examples of phytohormones

Chemical coordination in animals

- Carried out with the help of hormones
- Hormones are secreted by endocrine glands such as the pituitary gland, thyroid gland, adrenal gland, pancreas etc.

Chapter 6: Electricity

- **Electric current:** Amount of charge flowing per unit time.
 - $I = \frac{Q}{I}$ I = current
 - Q = net charge flowing
 - t = time

• Unit: I Ampere $1A = \frac{1C}{1s}$

 $Q \rightarrow \text{Coulomb}(\text{C})$

t = Second (s)

Potential difference:

The potential difference between two separate points is defined as the work done to move a unit positive charge from one point to another.

$$V = \frac{W}{Q}$$

• Unit: Volt, 1 Volt =
$$\frac{1 \text{ joule}}{1 \text{ coulomb}}$$
 $1 \text{ V} = 1 \text{ J C}^{-1}$

✤ Ohm's law:

Under constant physical conditions (i.e., constant temperature, pressure etc.), the current flowing through a conductor is directly proportional to the potential difference across the conductor.

- Current ∞ potential difference $(V \propto I)$ V = IR Where, R = resistance
- Unit of resistance (R) $\rightarrow \Omega$ (Ohm)

$$1\Omega = \frac{1V}{1A}$$

* Factors on which resistance depends

- $R \propto l$, when area of cross-section and material are constant l = length
- $R \propto A$, when *l* and material are constant A = perpendicular cross-section
- Overall, $R \propto \frac{l}{A}$
- Or, $R = \rho \frac{l}{A}$, where ρ is resistivity which is different for different material
- Resistivity of a substance is equal to the resistance of a unit square of that substance.
- Unit $(\rho) \rightarrow \Omega$. m
- Net resistance of resistors in series connection

 $R_{\rm net}=R_1+R_2+R_3+\ldots+R_n$

✤ Net resistance of resistors in parallel

 $\frac{1}{R_{net}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$

- Heating Effect of current, heat produced depends on:
 - Potential difference (V)
 - Electric current (I)
 - Time for which current passes (t)
 - Electric energy = *VIt*

• It can be written as:
$$E = I^2 R t = \frac{V^2}{R} t$$

- Unit $-1 \text{ kWh} = 3.6 \times 10^6 \text{ J}$
- ✤ Application: Electric iron, toaster, fused wire

Fuse wire: a low-melting point wire connected in series with electric devices for safety.

• Electric power: $P = VI = I^2 R = \frac{V^2}{R}$

• Unit: $1 \text{ W} = 1 \text{V} \times 1 \text{A}$

Chapter 7: Magnetic Effects of Current

Properties of magnetic field lines

- Originate from the North pole and end at the South pole [outside the magnet]
- They are closed continuous lines
- Density of the lines increases near the poles and decreases away from the poles
- Lines never cross each other

✤ Magnetic field lines of current carrying wire

- It is circular with axis as the wire.
- Varies with distance from wire. (Inversely proportional)
- Direction depends on direction of current.
- Deflection of compass near a conductor (Shown by arrow):

Right-hand thumb rule:

When thumb is in direction of current, the curl of fingers gives direction of circular magnetic field.

Corkscrew rule

If one drives a corkscrew in the direction of the current, then the direction in which the handle is turned is the direction of the magnetic field on the magnetic field lines.

* Solenoid

Solenoid is a cylindrical coil having many turns of insulated wires wrapped closely. When current is passed through the coil, a magnetic field is produced along the axis of the coil.

 Direction of force on a current carrying conductor in a magnetic field can be given by Fleming's left-hand rule.

Application of magnetic force – Electric motor When current is passed through a coil kept in a magnetic field, a force acts on it which rotates the electric motor.

Electromagnetic Induction

Generation of a current in the conductor due to a varying magnetic field (moving magnet, or moving conductor)

- Application AC/DC generator
- Direction of induced current in a conductor moving in a magnetic fierld can be given by Fleming's right hand rule.

Chapter 8: Sources of Energy

✤ Qualities of a good fuel/source of energy are:

- That would do a large amount of work per unit volume or mass
- Easily accessible
- Easy to store and transport
- Economical

***** Factors to be considered for choosing fuel are:

- How much heat it produces
- Less smoke generation
- Easy availability

***** Conventional sources of energy:

- Fossil fuels Coal, petroleum and natural gas
- Advantages
 - Easy availability
 - Generate heat that is easily converted into electricity
- Disadvantages
 - Non-renewable
 - Limited reserve
 - Cause air pollution

✤ Non-conventional sources of energy

- Solar energy Solar cooker, solar water heater (very efficient for small scale electricity production)
- Tidal energy, wave energy, ocean thermal energy
- Geothermal energy Heat energy inside the earth
- Wind energy
- Nuclear energy Not dependent on solar energy, never-ending source, very efficient source, more environment friendly
- ◆ Thermal power plant Coal and petroleum are burned to produce heat
- ✤ Hydro power plant (Renewable source)
 - Problems Limited places for construction (only Hilly areas)
- ✤ Technological improvement
 - Bio-mass Charcoal, cow-dung, vegetable waste, sewage
 - Wind energy Environment friendly, renewable