## Synopsis - Grade 10 Math Term II

## Chapter 4: Quadratic Equations

## * General form of quadratic equations

The general form of quadratic equation in the variable ' $x$ ' is $a x^{2}+b x+c=0$, where $a, b$, $c$ are real numbers and $a \neq 0$.
For example, $3 x^{2}+6 x+2=0, x^{2}-2=0$

## * Roots of quadratic equations

A real number ' $k$ ' is said to be the root of the quadratic equation, $a x^{2}+b x+c=0$, if $a k^{2}+b k+c=0$
For example, 3 and -10 are the roots of the quadratic equation, $x^{2}+7 x-30=0$, because $3^{2}+7 \times 3-30=9+21-30=30-30=0=$ R.H.S.
$(-10)^{2}+7 \times(-10)-30=100-70-30=0=$ R.H.S.
Note: $x=\alpha$ ( $\alpha$ may or may not be real) is a solution of the quadratic equation, $a x^{2}+b x+c=0$, if it satisfies the quadratic equation.

## * Solution of quadratic equation by factorization method

If we can factorise $a x^{2}+b x+c=0$, where $a \neq 0$, into a product of two linear factors, then the roots of this quadratic equation can be calculated by equating each factor to zero.
Example: Find the roots of the equation, $2 x^{2}-7 \sqrt{3} x+15=0$, by factorisation.

## Solution:

$$
\begin{aligned}
& 2 x^{2}-7 \sqrt{3} x+15=0 \\
& \Rightarrow 2 x^{2}-2 \sqrt{3} x-5 \sqrt{3} x+15=0 \\
& \Rightarrow 2 x(x-\sqrt{3})-5 \sqrt{3}(x-\sqrt{3})=0 \\
& \Rightarrow(x-\sqrt{3})(2 x-5 \sqrt{3})=0 \\
& (x-\sqrt{3})=0 \text { or }(2 x-5 \sqrt{3})=0 \\
& \Rightarrow x=\sqrt{3} \text { or } x=\frac{5 \sqrt{3}}{2}
\end{aligned}
$$

Therefore, $\sqrt{3}$ and $\frac{5 \sqrt{3}}{2}$ are the roots of the given quadratic equation.

## * Solution of quadratic equation by completing the square

A quadratic equation can also be solved by the method of completing the square.

Example: Find the roots of the quadratic equation, $5 x^{2}+7 x-6=0$, by the method of completing the square.

## Solution:

$5 x^{2}+7 x-6=0$
$\Rightarrow 5\left[x^{2}+\frac{7}{5} x-\frac{6}{5}\right]=0$
$\Rightarrow x^{2}+2 \cdot x \cdot \frac{7}{10}+\left(\frac{7}{10}\right)^{2}-\left(\frac{7}{10}\right)^{2}-\frac{6}{5}=0$
$\Rightarrow\left(x+\frac{7}{10}\right)^{2}-\frac{49}{100}-\frac{6}{5}=0$
$\Rightarrow\left(x+\frac{7}{10}\right)^{2}=\frac{169}{100}$
$\Rightarrow\left(x+\frac{7}{10}\right)= \pm \sqrt{\frac{169}{100}}= \pm \frac{13}{10}$
$x+\frac{7}{10}=\frac{13}{10}$ or $x+\frac{7}{10}=\frac{-13}{10}$
$\Rightarrow x=\frac{13}{10}-\frac{7}{10}=\frac{3}{5}$ or $x=\frac{-13}{10}-\frac{7}{10}=-2$
Therefore, -2 and $\frac{3}{5}$ are the roots of the given quadratic equation.

## Quadratic formula

The roots of the quadratic equation, $a x^{2}+b x+c=0$, are given by,
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, where $b^{2}-4 a c \geq 0$

## * Nature of roots of quadratic equations

For the quadratic equation, $a x^{2}+b x+c=0$, where $a \neq 0$, the discriminant ' D ' is defined as
$\mathrm{D}=b^{2}-4 a c$
The quadratic equation, $a x^{2}+b x+c=0$, where $a \neq 0$, has
(i) two distinct real roots, if $\mathrm{D}=b^{2}-4 a c>0$
(ii) two equal real roots, if $\mathrm{D}=b^{2}-4 a c=0$
(iii) no real roots, if $\mathrm{D}=b^{2}-4 a c<0$

## Chapter 5: Arithmetic Progressions

## * Arithmetic progression (AP)

- An arithmetic progression is a list of numbers in which the difference between any two consecutive terms is equal.
- In an AP, each term, except the first term, is obtained by adding a fixed number called common difference to the preceding term.
- The common difference of an AP can be positive, negative or zero.

Example:
 and 3 respectively.

## * General form of AP

- The general form of an AP can be written as $a, a+d, a+2 d, a+3 d \ldots$, where $a$ is the first term and $d$ is the common difference.
- A given list of numbers i.e., $a_{1}, a_{2}, a_{3} \ldots$ forms an AP if $a_{k+1}-a_{k}$ is the same for all values of $k$.
* $\boldsymbol{n}^{\text {th }}$ term of an AP

The $n^{\text {th }}$ term $\left(a_{n}\right)$ of an AP with first term $a$ and common difference $d$ is given by $a_{n}=a+(n-1) d$
Here, $a_{n}$ is called the general term of the AP.

## * Sum of first $\boldsymbol{n}$ terms of an AP

The sum of the first $n$ terms of an AP is given by
$S=\frac{n}{2}[2 a+(n-1) d]$, where $a$ is the first term and $d$ is the common difference.
If there are only $n$ terms in an AP, then $S=\frac{n}{2}[a+d]$, where $d=a_{n}$ is the last term.

## Chapter 7: Coordinate Geometry

## * Axes and coordinates

- The distance of a point from the $y$-axis is called its $x$-coordinate or abscissa, and the distance of the point from the $x$-axis is called its $y$-coordinate or ordinate.
- If the abscissa of a point is $x$ and the ordinate is $y$, then $(x, y)$ are called the coordinates of the point.
- The coordinates of a point on the $x$-axis are of the form $(x, 0)$ and the coordinates of the point on the $y$-axis are of the form $(0, y)$.
- The coordinates of the origin are $(0,0)$.
- The coordinates of a point are of the form $(+,+)$ in the first quadrant, $(-,+)$ in the second quadrant, $(-,-)$ in the third quadrant and $(+,-)$ in the fourth quadrant, where + denotes a positive real number and - denotes a negative real number.


## * Distance formula

The distance between the points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ is given by
$\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
Cor: The distance of a point $(x, y)$ from the origin $\mathrm{O}(0,0)$ is given by $\mathrm{OP}=\sqrt{x^{2}+y^{2}}$.

* Section formula


The co-ordinates of the point $\mathrm{P}(x, y)$, which divides the line segment joining the points A $\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ internally in the ratio $m: n$, are given by:
$\mathrm{P}(x, y)=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$
Cor: The mid-point of the line segment joining the points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \quad$ [Note: Here, $m=n=1$ ]

## * Area of a triangle

The area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by the numerical value of the expression $\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

## Chapter 9: Some Applications of Trigonometry

## * Line of sight

It is the line drawn from the eye of an observer to a point on the object viewed by the observer.

* Angle of elevation


Let P be the position of the eye of the observer. Let Q be the object above the horizontal line PR.
Angle of elevation of the object Q with respect to the observer P is the angle made by the line of sight PQ with the horizontal line PR. That is, $\angle \mathrm{QPR}$ is the angle of elevation.

* Angle of depression


Let P be the position of the eye of the observer. Let Q be the object below the horizontal line PX.
Angle of depression of the object Q with respect to the observer P is the angle made by the line of sight PQ with the horizontal line PX. That is, $\angle \mathrm{XPQ}$ is the angle of depression. It can be seen that $\angle \mathrm{PQR}=\angle \mathrm{XPQ}$
[Alternate interior angles]

* The height or length of an object or the distance between two distant objects can be calculated by using trigonometric ratios.

Example: Two wells are located on the opposite sides of a 18 m tall building. As observed from the top of the building, the angles of depression of the two wells are $30^{\circ}$ and $45^{\circ}$. Find the distance between the wells. [Use $\sqrt{3}=1.732$ ]

Solution: The given situation can be represented as


Here, PQ is the building. A and B are the positions of the two wells such that:
$\angle \mathrm{XPB}=30^{\circ}, \angle \mathrm{X}^{\prime} \mathrm{PA}=45^{\circ}$
Now, $\angle \mathrm{PAQ}=\angle \mathrm{X}^{\prime} \mathrm{PA}=45^{\circ}$
$\angle \mathrm{PBQ}=\angle \mathrm{XPB}=30^{\circ}$
In $\triangle \mathrm{PAQ}$, we have
$\frac{\mathrm{PQ}}{\mathrm{AQ}}=\tan 45^{\circ}$
$\Rightarrow \frac{18}{\mathrm{AQ}}=1$
$\Rightarrow \mathrm{AQ}=18 \mathrm{~m}$
In $\triangle \mathrm{PBQ}$, we have

$$
\begin{aligned}
& \frac{\mathrm{PQ}}{\mathrm{QB}}=\tan 30^{\circ} \\
& \Rightarrow \frac{18}{\mathrm{QB}}=\frac{1}{\sqrt{3}} \\
& \Rightarrow \mathrm{QB}=18 \sqrt{3} \\
& \begin{aligned}
\therefore \mathrm{AB}=\mathrm{AQ}+\mathrm{QB} & =(18+18 \sqrt{3}) \mathrm{m} \\
& =18(1+\sqrt{3}) \mathrm{m} \\
& =18(1+1.732) \mathrm{m} \\
& =18 \times 2.732 \mathrm{~m} \\
& =49.176 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

## Chapter 10: Circles

## * Secant

A line that intersects a circle in two points is called a secant of the circle.
Here, $\overleftrightarrow{\mathrm{PQ}}$ is a secant of the circle with centre O .


## * Tangent

A tangent to a circle is a line that intersects the circle at exactly one point. The point is called the point of contact of the tangent.


Here, $l$ is tangent to the circle with centre O and point P is the point of contact of the tangent $l$.

- Only one tangent can be drawn at a point on the circle.
- The tangent to a circle is a particular case of the secant, when the two end points of its corresponding chord coincide.
* The tangent at any point on a circle is perpendicular to the radius through the point of contact.
- No tangent can be drawn to a circle passing through a point lying inside the circle.
- One and only one tangent can be drawn to a circle passing through a point lying on the circle.
- Exactly two tangents can be drawn to a circle through a point lying outside the circle.


## * Length of the tangent

The length of the segment of the tangent from an external point $P$ to the point of contact with the circle is called the length of the tangent from the point P to the circle.

* The lengths of tangents drawn from an external point to a circle are equal.


## Chapter 11: Constructions

## Division of a line segment in a given ratio

Example: Draw $\overline{\mathrm{PQ}}=9 \mathrm{~cm}$ and divide it in the ratio 2:5.

## Steps of construction:

(1) Draw $\overline{\text { PQ }}=9 \mathrm{~cm}$
(2) Draw a ray $\overrightarrow{\mathrm{PX}}$, making an acute angle with PQ .
(3) Mark $7(=2+5)$ points $A_{1}, A_{2}, A_{3} \ldots A_{7}$ along PX such that $\mathrm{PA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\mathrm{A}_{3} \mathrm{~A}_{4}=\mathrm{A}_{4} \mathrm{~A}_{5}=\mathrm{A}_{5} \mathrm{~A}_{6}=\mathrm{A}_{6} \mathrm{~A}_{7}$
(4) Join $\mathrm{QA}_{7}$
(5) Through the point $\mathrm{A}_{2}$, draw a line parallel to $\mathrm{QA}_{7}$ by making an angle equal to $\angle \mathrm{PQA}_{7}$ at $\mathrm{A}_{2}$, intersecting PQ at point R .
$\therefore \mathrm{PR}: \mathrm{RQ}=2: 5$


* Construction of a triangle similar to a given triangle as per the given scale factor
- Case I: Scale factor less than 1

Example: Draw a $\triangle \mathrm{ABC}$ with sides $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}$, and $\angle \mathrm{B}=70^{\circ}$. Then, construct a similar triangle whose sides are $\left(\frac{3}{5}\right)^{\text {th }}$ of the corresponding sides of $\triangle \mathrm{ABC}$.

## Steps of construction:

(1) Draw $\mathrm{BC}=8 \mathrm{~cm}$
(2) At B, draw $\angle \mathrm{XBC}=70^{\circ}$
(3) With C as centre and radius 7 cm , draw an arc intersecting BX at A .
(4) Join $A B$, and $\triangle A B C$ is thus obtained.
(5) Draw a ray $\overrightarrow{\mathrm{BY}}$, making an acute angle with BC .
(6) Mark 5 points, $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$, along $B Y$ such that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}$
(7) Join $\mathrm{CB}_{5}$
(8) Through the point $\mathrm{B}_{3}$, draw a line parallel to $\mathrm{B}_{5} \mathrm{C}$ by making an angle equal to $\angle \mathrm{BB}_{5} \mathrm{C}$, intersecting BC at $\mathrm{C}^{\prime}$.
(9) Through the point $\mathrm{C}^{\prime}$, draw a line parallel to AC , intersecting BA at $\mathrm{A}^{\prime}$. Thus,

$\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

## - Case II: Scale factor greater than 1

Example: Construct an isosceles triangle with base 5 cm and equal sides of 6 cm .
Then, construct another triangle whose sides are $\left(\frac{4}{3}\right)^{r d}$ of the corresponding sides of the first triangle.

## Steps of construction:

(1) Draw $\mathrm{BC}=5 \mathrm{~cm}$
(2) With B as the centre and C as the radius 6 cm , draw arcs on the same side of BC , intersecting at A .
(3) Join $A B$ and $A C$ to get the required $\triangle A B C$.
(4) Draw a ray $\overrightarrow{\mathrm{BX}}$, making an acute angle with BC on the side opposite to the vertex A.
(5) Mark 4 points $B_{1}, B_{2}, B_{3}, B_{4}$, along $B X$ such that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}$
(6) Join $B_{3} C$. Draw a line through $B_{4}$ parallel to $B_{3} C$, making an angle equal to $\angle \mathrm{BB}_{3} \mathrm{C}$, intersecting the extended line segment BC at $\mathrm{C}^{\prime}$.
(7) Through point $\mathrm{C}^{\prime}$, draw a line parallel to CA , intersecting extended BA at $\mathrm{A}^{\prime}$.


The resulting $\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

## * Construction of tangents to a circle

Example: Draw a circle of radius 3 cm . From a point 5 cm away from its centre, construct a pair of tangents to the circle and measure their lengths.

## Steps of construction:

(1) First draw a circle with centre O and radius 3 cm . Take a point P such that $\mathrm{OP}=5 \mathrm{~cm}$, and then join OP.
(2) Draw a perpendicular bisector of OP. Let M be the mid point of OP.
(3) With M as the centre and OM as the radius, draw a circle. Let it intersect the previously drawn circle at A and B.
(4) Joint PA and PB. Therefore, PA and PB are the required tangents. It can be observed that $\mathrm{PA}=\mathrm{PB}=4 \mathrm{~cm}$.


## Chapter 12: Areas Related to Circles

* Area of a circle $=\pi r^{2}$

Circumference of a circle $=2 \pi r$; where $r$ is the radius of a circle.

* Area of sector of a circle
- Area of the sector of angle $\theta=\frac{\theta}{360^{\circ}} \times \pi r^{2}$, where $r$ is the radius of the circle

- Area of a quadrant of a circle with radius $r=\frac{\pi r^{2}}{4} \quad\left[\because\right.$ For quadrant $\left.\theta=90^{\circ}\right]$

* Length of arc of a circle

Length of the arc of a sector of angle $\theta=\frac{\theta}{360^{\circ}} \times 2 \pi r$, where $r$ is the radius of the circle


## * Area of segment of a circle

Area of segment $\mathrm{APB}=$ Area of sector OAPB - Area of $\triangle \mathrm{OAB}$

$$
=\frac{\theta}{360} \times \pi r^{2}-\text { area of } \Delta \mathrm{OAB}
$$



## Chapter 13: Surface Areas and Volumes

## * Cuboid

- Surface area $=2(l b+b h+h l)$
- Volume $=l \times b \times h$, where $l, b, h$ are respectively length, breadth and height of the cuboid



## * Cube

- Surface area $=6 a^{2}$
- Volume $=a^{3}$, where $a$ is the edge of the cube



## * Cylinder

- Curved surface area $(\mathrm{CSA})=2 \pi r h$
- Total surface area $($ TSA $)=2 \pi r^{2}+2 \pi r h=2 \pi r(r+h)$
- Volume $=\pi r^{2} h$, where $r$ is the radius and $h$ is the height of the cylinder



## * Cone

- Curved surface area (CSA) $=\pi r l$
- Total surface area $(\mathrm{TSA})=\pi r^{2}+\pi r l=\pi r(r+l)$
- Volume $=\frac{1}{3} \pi r^{2} h$, where $r$ is the radius and $h$ is the height of the cone



## * Sphere

- Surface area $=4 \pi r^{2}$
- Volume $=\frac{4}{3} \pi r^{3}$, where $r$ is the radius of the sphere



## Hemisphere

- Curved surface area $(\mathrm{CSA})=2 \pi r^{2}$
- Total surface area $(\mathrm{TSA})=3 \pi r^{2}$
- Volume $=\frac{2}{3} \pi r^{3}$, where r is the radius of the hemisphere


Note: Volume of the combination of solids is the sum of the volumes of the individual solids

## * Conversion of a solid from one shape into another

When a solid is converted into another solid of a different shape, the volume of the solid does not change.

## * Frustum of a cone

- Volume of the frustum of a cone $=\frac{1}{3} \pi\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right) h$
- CSA of the frustum of a cone $=\pi\left(r_{1} r_{2}\right) l$, where $l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$
- TSA of the frustum of a cone $=\pi\left(r_{1}+r_{2}\right) l+\pi r_{1}^{2}+\pi r_{2}^{2}$, where $l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$


## Chapter 15: Probability

* The theoretical probability (also called classical probability) of an event $E$, denoted as $P(E)$ is given by

$$
P(E)=\frac{\text { Number of outcomes favourable to } E}{\text { Number of all possible outcomes of the experiment }}
$$

## * Elementary events:

- An event having only one outcome of the experiment is known as elementary event.
- The sum of the probabilities of all the elementary events of an experiment is 1 .

Example: A dice is thrown once. What is the probability of getting 1 on the dice?

## Solution:

When a dice is thrown once, the possible outcomes are $1,2,3,4,5,6$.
Let $A$ be the event of getting 1 on the dice.
$\therefore P(A)=\frac{\text { Number of outcomes favourable to } A}{\text { Number of all possible outcomes }}=\frac{1}{6}$

## * Complementary events

For an event $E$ of an experiment, the event $\bar{E}$ represents 'not $E$ ', which is called the complement of the event $E$. We say, $E$ and $\bar{E}$ are complementary events.
$P(E)+P(\bar{E})=1$
$\Rightarrow \mathrm{P}(\bar{E})=1-P(E)$

* The probability of an impossible event of an experiment is 0 .
* The probability of a sure (or certain) event of an experiment is 1 .
$\therefore 0 \leq \mathrm{P}(\mathrm{E}) \leq 1$

