Synopsis – Grade 10 Math Term II

Chapter 4: Quadratic Equations

✤ General form of quadratic equations

The general form of quadratic equation in the variable 'x' is $ax^2 + bx + c = 0$, where a, b, c are real numbers and $a \neq 0$.

For example, $3x^2 + 6x + 2 = 0$, $x^2 - 2 = 0$

* Roots of quadratic equations

A real number 'k' is said to be the root of the quadratic equation, $ax^2 + bx + c = 0$, if $ak^2 + bk + c = 0$

For example, 3 and -10 are the roots of the quadratic equation, $x^2 + 7x - 30 = 0$, because $3^2 + 7 \times 3 - 30 = 9 + 21 - 30 = 30 - 30 = 0 = \text{R.H.S.}$

$$(-10)^{2} + 7 \times (-10) - 30 = 100 - 70 - 30 = 0 =$$
R.H.S.

Note: $x = \alpha$ (α may or may not be real) is a solution of the quadratic equation,

 $ax^2 + bx + c = 0$, if it satisfies the quadratic equation.

Solution of quadratic equation by factorization method

If we can factorise $ax^2 + bx + c = 0$, where $a \neq 0$, into a product of two linear factors, then the roots of this quadratic equation can be calculated by equating each factor to zero.

Example: Find the roots of the equation, $2x^2 - 7\sqrt{3}x + 15 = 0$, by factorisation.

Solution:

$$2x^{2} - 7\sqrt{3}x + 15 = 0$$

$$\Rightarrow 2x^{2} - 2\sqrt{3}x - 5\sqrt{3}x + 15 = 0$$

$$\Rightarrow 2x(x - \sqrt{3}) - 5\sqrt{3}(x - \sqrt{3}) = 0$$

$$\Rightarrow (x - \sqrt{3})(2x - 5\sqrt{3}) = 0$$

$$(x - \sqrt{3}) = 0 \text{ or } (2x - 5\sqrt{3}) = 0$$

$$\Rightarrow x = \sqrt{3} \text{ or } x = \frac{5\sqrt{3}}{2}$$

Therefore, $\sqrt{3}$ and $\frac{5\sqrt{3}}{2}$ are the roots of the given quadratic equation.

✤ Solution of quadratic equation by completing the square

A quadratic equation can also be solved by the method of completing the square.

Example: Find the roots of the quadratic equation, $5x^2 + 7x - 6 = 0$, by the method of completing the square.

Solution:

$$5x^{2} + 7x - 6 = 0$$

$$\Rightarrow 5\left[x^{2} + \frac{7}{5}x - \frac{6}{5}\right] = 0$$

$$\Rightarrow x^{2} + 2 \cdot x \cdot \frac{7}{10} + \left(\frac{7}{10}\right)^{2} - \left(\frac{7}{10}\right)^{2} - \frac{6}{5} = 0$$

$$\Rightarrow \left(x + \frac{7}{10}\right)^{2} - \frac{49}{100} - \frac{6}{5} = 0$$

$$\Rightarrow \left(x + \frac{7}{10}\right)^{2} = \frac{169}{100}$$

$$\Rightarrow \left(x + \frac{7}{10}\right)^{2} = \pm \sqrt{\frac{169}{100}} = \pm \frac{13}{10}$$

$$x + \frac{7}{10} = \frac{13}{10} \text{ or } x + \frac{7}{10} = \frac{-13}{10}$$

$$\Rightarrow x = \frac{13}{10} - \frac{7}{10} = \frac{3}{5} \text{ or } x = \frac{-13}{10} - \frac{7}{10} = -2$$

Therefore, -2 and $\frac{3}{5}$ are the roots of the given quadratic equation.

✤ Quadratic formula

The roots of the quadratic equation, $ax^2 + bx + c = 0$, are given by,

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}, \text{ where } b^2-4ac \ge 0$$

✤ Nature of roots of quadratic equations

For the quadratic equation, $ax^2 + bx + c = 0$, where $a \neq 0$, the discriminant 'D' is defined as

 $\mathbf{D} = b^2 - 4ac$

The quadratic equation, $ax^2 + bx + c = 0$, where $a \neq 0$, has

- (i) two distinct real roots, if $D = b^2 4ac > 0$
- (ii) two equal real roots, if $D = b^2 4ac = 0$
- (iii) no real roots, if $D = b^2 4ac < 0$

Chapter 5: Arithmetic Progressions

***** Arithmetic progression (AP)

- An arithmetic progression is a list of numbers in which the difference between any two consecutive terms is equal.
- In an AP, each term, except the first term, is obtained by adding a fixed number called common difference to the preceding term.
- The common difference of an AP can be positive, negative or zero.

Example:

3, 6, 9, 12, is an AP whose first term and common difference are 3 and 3 respectively.

✤ General form of AP

- The general form of an AP can be written as $a, a + d, a + 2d, a + 3d \dots$, where a is the first term and d is the common difference.
- A given list of numbers i.e., $a_1, a_2, a_3 \dots$ forms an AP if $a_{k+1} a_k$ is the same for all values of k.

* n^{th} term of an AP

The n^{th} term (a_n) of an AP with first term a and common difference d is given by $a_n = a + (n-1) d$

Here, a_n is called the general term of the AP.

Sum of first *n* terms of an AP

The sum of the first *n* terms of an AP is given by

 $S = \frac{n}{2} \left[2a + (n-1)d \right]$, where *a* is the first term and *d* is the common difference.

If there are only *n* terms in an AP, then $S = \frac{n}{2}[a+d]$, where $d = a_n$ is the last term.

Chapter 7: Coordinate Geometry

* Axes and coordinates

- The distance of a point from the *y*-axis is called its *x*-coordinate or abscissa, and the distance of the point from the *x*-axis is called its *y*-coordinate or ordinate.
- If the abscissa of a point is x and the ordinate is y, then (x, y) are called the coordinates of the point.
- The coordinates of a point on the *x*-axis are of the form (*x*, 0) and the coordinates of the point on the *y*-axis are of the form (0, *y*).
- The coordinates of the origin are (0, 0).
- The coordinates of a point are of the form (+, +) in the first quadrant, (-, +) in the second quadrant, (-, -) in the third quadrant and (+, -) in the fourth quadrant, where + denotes a positive real number and denotes a negative real number.
- ✤ Distance formula

The distance between the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Cor: The distance of a point (*x*, *y*) from the origin O (0, 0) is given by $OP = \sqrt{x^2 + y^2}$.

Section formula

$$A \underbrace{\stackrel{m}{\bullet} P(x, y) \quad n}_{(x_1, y_1)} \bullet B(x_2, y_2)$$

The co-ordinates of the point P (x, y), which divides the line segment joining the points A (x_1 , y_1) and B (x_2 , y_2) internally in the ratio m:n, are given by:

$$\mathbf{P}(x, y) = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$$

Cor: The mid-point of the line segment joining the points A (x_1, y_1) and B (x_2, y_2) is

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
 [Note: Here, $m = n = 1$]

✤ Area of a triangle

The area of a triangle whose vertices are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is given by the numerical value of the expression $\frac{1}{2} \Big[x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \Big]$

Chapter 9: Some Applications of Trigonometry

* Line of sight

It is the line drawn from the eye of an observer to a point on the object viewed by the observer.

Angle of elevation

Let P be the position of the eye of the observer. Let Q be the object above the horizontal line PR.

Angle of elevation of the object Q with respect to the observer P is the angle made by the line of sight PQ with the horizontal line PR. That is, $\angle QPR$ is the angle of elevation.

* Angle of depression

Let P be the position of the eye of the observer. Let Q be the object below the horizontal line PX.

Angle of depression of the object Q with respect to the observer P is the angle made by the line of sight PQ with the horizontal line PX. That is, $\angle XPQ$ is the angle of depression. It can be seen that

 $\angle PQR = \angle XPQ$ [Alternate interior angles]

The height or length of an object or the distance between two distant objects can be calculated by using trigonometric ratios.

Example: Two wells are located on the opposite sides of a 18 m tall building. As observed from the top of the building, the angles of depression of the two wells are 30° and 45°. Find the distance between the wells. [Use $\sqrt{3} = 1.732$]

Solution: The given situation can be represented as

Here, PQ is the building. A and B are the positions of the two wells such that:

 \angle XPB = 30°, \angle X'PA =45° Now, \angle PAQ = \angle X'PA = 45° \angle PBQ = \angle XPB = 30°

In $\triangle PAQ$, we have

$$\frac{PQ}{AQ} = \tan 45^{\circ}$$

$$\Rightarrow \frac{18}{AQ} = 1$$

$$\Rightarrow AQ = 18 \text{ m}$$
In $\triangle PBQ$, we have
$$\frac{PQ}{QB} = \tan 30^{\circ}$$

$$\Rightarrow \frac{18}{QB} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow QB = 18\sqrt{3}$$

$$\therefore AB = AQ + QB = (18 + 18\sqrt{3}) \text{ m}$$

$$= 18(1 + \sqrt{3}) \text{ m}$$

$$= 18(1 + 1.732) \text{ m}$$

$$= 18 \times 2.732 \text{ m}$$

$$= 49.176 \text{ m}$$

Chapter 10: Circles

* Secant

A line that intersects a circle in two points is called a secant of the circle.

Here, \overrightarrow{PQ} is a secant of the circle with centre O.

✤ Tangent

A tangent to a circle is a line that intersects the circle at exactly one point. The point is called the point of contact of the tangent.

Here, l is tangent to the circle with centre O and point P is the point of contact of the tangent l.

- Only one tangent can be drawn at a point on the circle.
- The tangent to a circle is a particular case of the secant, when the two end points of its corresponding chord coincide.
- The tangent at any point on a circle is perpendicular to the radius through the point of contact.
 - No tangent can be drawn to a circle passing through a point lying inside the circle.
 - One and only one tangent can be drawn to a circle passing through a point lying on the circle.
 - Exactly two tangents can be drawn to a circle through a point lying outside the circle.

Length of the tangent

The length of the segment of the tangent from an external point P to the point of contact with the circle is called the length of the tangent from the point P to the circle.

• The lengths of tangents drawn from an external point to a circle are equal.

Chapter 11: Constructions

✤ Division of a line segment in a given ratio

Example: Draw $\overline{PQ} = 9$ cm and divide it in the ratio 2:5.

Steps of construction:

- (1) Draw PQ = 9 cm
- (2) Draw a ray \overrightarrow{PX} , making an acute angle with PQ.
- (3) Mark 7 (= 2 + 5) points $A_1, A_2, A_3 \dots A_7$ along PX such that

 $PA_1 = A_1A_2 = A_2 A_3 = A_3 A_4 = A_4 A_5 = A_5 A_6 = A_6 A_7$

- (4) Join QA₇
- (5) Through the point A₂, draw a line parallel to QA₇ by making an angle equal to ∠PQA₇ at A₂, intersecting PQ at point R.
 ∴PR:RQ = 2:5

- * Construction of a triangle similar to a given triangle as per the given scale factor
 - Case I: Scale factor less than 1
 - **Example:** Draw a $\triangle ABC$ with sides BC = 8 cm, AC = 7 cm, and $\angle B = 70^{\circ}$. Then,

construct a similar triangle whose sides are $\left(\frac{3}{5}\right)^m$ of the corresponding sides of

 $\Delta ABC.$

Steps of construction:

- (1) Draw BC = 8 cm
- (2) At B, draw $\angle XBC = 70^{\circ}$
- (3) With C as centre and radius 7 cm, draw an arc intersecting BX at A.
- (4) Join AB, and \triangle ABC is thus obtained.
- (5) Draw a ray BY, making an acute angle with BC.
- (6) Mark 5 points, B_1 , B_2 , B_3 , B_4 , B_5 , along BY such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$
- (7) Join CB₅
- (8) Through the point B₃, draw a line parallel to B₅C by making an angle equal to $\angle BB_5C$, intersecting BC at C'.
- (9) Through the point C', draw a line parallel to AC, intersecting BA at A'. Thus,

 $\Delta A'BC'$ is the required triangle.

Case II: Scale factor greater than 1

Example: Construct an isosceles triangle with base 5 cm and equal sides of 6 cm.

Then, construct another triangle whose sides are $\left(\frac{4}{3}\right)^n$ of the corresponding sides of

the first triangle.

Steps of construction:

- (1) Draw BC = 5 cm
- (2) With B as the centre and C as the radius 6 cm, draw arcs on the same side of BC, intersecting at A.
- (3) Join AB and AC to get the required $\triangle ABC$.
- (4) Draw a ray BX, making an acute angle with BC on the side opposite to the vertex A.
- (5) Mark 4 points B_1 , B_2 , B_3 , B_4 , along BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$
- (6) Join B_3C . Draw a line through B_4 parallel to B_3C , making an angle equal to $\angle BB_3C$, intersecting the extended line segment BC at C'.
- (7) Through point C', draw a line parallel to CA, intersecting extended BA at A'.

meritnation

The resulting $\Delta A'BC'$ is the required triangle.

***** Construction of tangents to a circle

Example: Draw a circle of radius 3 cm. From a point 5 cm away from its centre, construct a pair of tangents to the circle and measure their lengths.

Steps of construction:

- (1) First draw a circle with centre O and radius 3 cm. Take a point P such that OP = 5 cm, and then join OP.
- (2) Draw a perpendicular bisector of OP. Let M be the mid point of OP.
- (3) With M as the centre and OM as the radius, draw a circle. Let it intersect the previously drawn circle at A and B.
- (4) Joint PA and PB. Therefore, PA and PB are the required tangents. It can be observed that PA = PB = 4 cm.

Chapter 12: Areas Related to Circles

• Area of a circle = πr^2

Circumference of a circle = $2\pi r$; where *r* is the radius of a circle.

- * Area of sector of a circle
 - Area of the sector of angle $\theta = \frac{\theta}{360^{\circ}} \times \pi r^2$, where *r* is the radius of the circle

• Area of a quadrant of a circle with radius $r = \frac{\pi r^2}{4}$ [:: For quadrant $\theta = 90^\circ$]

Length of the arc of a sector of angle $\theta = \frac{\theta}{360^\circ} \times 2\pi r$, where *r* is the radius of the circle

* Area of segment of a circle

Area of segment APB = Area of sector OAPB – Area of $\triangle OAB$

$$= \frac{\theta}{360} \times \pi r^2 - \text{area of } \Delta \text{OAB}$$

Chapter 13: Surface Areas and Volumes

- Cuboid
 - Surface area = 2(lb + bh + hl)
 - Volume = $l \times b \times h$, where *l*, *b*, *h* are respectively length, breadth and height of the cuboid

- Cube
 - Surface area = $6a^2$
 - Volume = a^3 , where *a* is the edge of the cube

* Cylinder

- Curved surface area (CSA) = $2\pi rh$
- Total surface area (TSA) = $2\pi r^2 + 2\pi rh = 2\pi r(r+h)$
- Volume = $\pi r^2 h$, where *r* is the radius and *h* is the height of the cylinder

Cone

- Curved surface area (CSA) = πrl
- Total surface area (TSA) = $\pi r^2 + \pi r l = \pi r (r+l)$
- Volume $=\frac{1}{3}\pi r^2 h$, where *r* is the radius and *h* is the height of the cone

Sphere

- Surface area = $4\pi r^2$
- Volume = $\frac{4}{3}\pi r^3$, where *r* is the radius of the sphere

* Hemisphere

- Curved surface area (CSA) = $2\pi r^2$
- Total surface area (TSA) = $3\pi r^2$
- Volume = $\frac{2}{3}\pi r^3$, where r is the radius of the hemisphere

Note: Volume of the combination of solids is the sum of the volumes of the individual solids

* Conversion of a solid from one shape into another

When a solid is converted into another solid of a different shape, the volume of the solid does not change.

Frustum of a cone

- Volume of the frustum of a cone = $\frac{1}{3}\pi (r_1^2 + r_2^2 + r_1 r_2)h$
- CSA of the frustum of a cone = $\pi (r_1 r_2) l$, where $l = \sqrt{h^2 + (r_1 r_2)^2}$
- TSA of the frustum of a cone = $\pi (r_1 + r_2) l + \pi r_1^2 + \pi r_2^2$, where $l = \sqrt{h^2 + (r_1 r_2)^2}$

Chapter 15: Probability

• The theoretical probability (also called classical probability) of an event *E*, denoted as P(E) is given by

 $P(E) = \frac{\text{Number of outcomes favourable to } E}{\text{Number of all possible outcomes of the experiment}}$

✤ Elementary events:

- An event having only one outcome of the experiment is known as elementary event.
- The sum of the probabilities of all the elementary events of an experiment is 1.

Example: A dice is thrown once. What is the probability of getting 1 on the dice? **Solution:**

When a dice is thrown once, the possible outcomes are 1, 2, 3, 4, 5, 6.

Let *A* be the event of getting 1 on the dice.

 $\therefore P(A) = \frac{\text{Number of outcomes favourable to } A}{\text{Number of all possible outcomes}} = \frac{1}{6}$

* Complementary events

For an event *E* of an experiment, the event \overline{E} represents 'not *E*', which is called the complement of the event *E*. We say, *E* and \overline{E} are **complementary** events.

$$P(E) + P(\overline{E}) = 1$$
$$\Rightarrow P(\overline{E}) = 1 - P(E)$$

- ✤ The probability of an impossible event of an experiment is 0.
- ★ The probability of a sure (or certain) event of an experiment is 1.
 ∴ 0 ≤ P(E) ≤ 1

Sherination